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Abstract—In this paper, we introduce memos, which integrates 

suitable memory management policies and schedules resources 

over the entire memory hierarchy in hybrid memory system. 

Powered by an OS kernel level monitoring tool, memos captures 

memory patterns online, and then leverages them to guide the 

memory page placement and data mapping. Experimental results 

show, on average, memos can benefit memory utilization, 

contributing to system throughput and QoS by 19.1% and 23.6%. 

Moreover, memos can reduce the NVM side memory latency by 

3~83.3%, energy consumption by 25.1~99%, and benefit the NVM 

lifetime significantly (40X improvement on average). 

I. INTRODUCTION 

N the era of big data and cloud computing, modern computer 
systems are facing numerous new challenges, such as fast 

growing memory footprint, rapidly increasing energy 
consumption, high demand for throughput, etc. In a typical 
cloud-computing environment, it is critical to have a large 
capacity memory system that can provide fast data retrieval and 
operate at a low energy cost. Recently, the emerging 
Non-Volatile Memory (NVM) technologies bring an 
opportunity to build such hybrid memory systems [1,3,10,11,12]. 
However, efficiently managing such hybrid memory systems 
requires considerations of a variety of factors including the 
distinct memory characteristics, diverse workload behaviors, 
and architecture features, which poses new challenges for the 
memory management mechanism in modern Operating System 
(OS) [2,4,5,9,13,14,15,16,17]. 
    Many studies have discussed memory management for 
“horizontal” hybrid memory system, which organizes DRAM 
and NVM side by side at the same level in memory hierarchy 
[1,11] through different memory channels. Based on this design, 
our study has the following insights: (1) Managing all levels in 
the entire memory hierarchy can bring enormous benefits, 
especially for hybrid memory systems. In particular, besides 
cache, memory channel is an interesting dimension to consider 
as balancing, scheduling and isolating behaviors [7], which can 
bring distinct impacts on DRAM and NVM. (2) For a hybrid 
DRAM-NVM main memory system, an effective memory 
management scheme should be aware of memory access 
characteristics, since the performance of NVM and DRAM are 
sensitive to certain behaviors such as memory footprint, access 
hotness/hotspot, read/write activities, reuse time, etc. (3) An 
ideal mechanism for managing hybrid memories should balance 
memory utilization across memory banks/channels, and 
efficiently migrate data between NVM and DRAM for 
dynamically changing access patterns. 

Based on the above considerations, we introduce memos, a 
uniform memory management framework that can flexibly and 
efficiently manage hybrid memory system. Firstly, memos 
explores the synergy of all memory levels in the entire memory 
hierarchy including the last level cache (LLC), channels and  
 
 

memory banks, which collectively have a predominant impact 
on hybrid memory system performance. Secondly, powered by 
SysMon, an OS-level application behavior monitoring tool, 
memos can obtain and leverage a rich source of memory 
accessing information including memory utilization, hot/cold 
pages, read/write patterns, and page reuse time, etc. Finally, 
memos provides high memory bank-level parallelism by 
rebalancing memory utilization across hot and underutilized 
banks, thus facilitating data movements between DRAM and 
NVM, and improving the overall bandwidth utilization. We list 
our contributions: 
(1) Full Hierarchy Hybrid Memory Management. For the 
first time, memos achieves a full hierarchy, application demand 
driven memory management covering cache, channels, and 
DRAM/ NVM banks, greatly benefiting the utilization of hybrid 
memory system and avoiding sub-optimal solutions caused by 
previous approaches. Further, we design a write-interval based 
migration scheme that moves pages across channels when 
memory behavior changes. 
(2) Dynamic Memory Bank/Channel Rebalancing. We 
propose a memory bank rebalancing approach to provide higher 
bank parallelism and boost data transfer rates between NVM and 
DRAM by reducing bank-level interferences. Moreover, we also 
balance memory requests across channels horizontally to 
achieve higher memory utilization.  
(3) Open Source SysMon. We open sourced SysMon, a kernel 
tool used to collect memory footprint, page hotness, reuse 
patterns, etc., for any running process. Specifically, SysMon can 
detect page level reads/writes and bank balance behaviors, 
which are critical to consider in hybrid memory environment. 
(4) Real Implementation. We implement memos in Linux 
kernel 2.6.32.15. Moreover, we further deploy a new emulation 
platform for hybrid memory system on a real multi-core machine 
by using the channel-partitioning approach [7].  

II. MEMOS AND MCHA 

A. Design Overview 

Fig.1 illustrates the overall design for our Multi-Channel 
Horizontal memory Architecture (MCHA), which combines 
NVM and DRAM horizontally. Channel index bits in PFN 
determine which channel, hence which type of memory (NVM 
or DRAM), a memory access is serviced. Based on MCHA, we 
design memos in the OS kernel. The core of memos is a Decision 
Policy Mechanism (DPM), which includes memory manage- 
ment policies, and provides the interfaces that interact with other 
kernel modules. Leveraging runtime information captured by 
SysMon (i.e. hot/cold pages, read/write features and reuse 
distance, etc.), DPM firstly determines memory affinity mapping. 
DPM also makes decision regarding when and how to migrate 
the physical pages to another sub-memory system. Moreover, 
memos includes effective state-of-the-art memory policies into 
its core mechanism. DPM enables different cache policies for 
different memory channels by reserving segments in LLC for 
NVM and DRAM channel respectively, and optimizes cache and  
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Fig.1: The overview of our design (memos and MCHA). 

main memory utilization vertically when mapping pages. Finally, 
for a specific sub-memory system, DPM employs the proper 
memory policies (partitioning and rebalancing) based on the 
characteristics of incoming memory requests.  

B. SysMon: Inner-OS Application Profiling Tool 

We design SysMon1, an application profiling tool, to collect 
application characteristics online. To determine page hotness, 
SysMon clears and checks (i.e., sampling) page access bit in 
PTE in continuous sampling windows (passes). In each pass, a 
given number of samplings (i.e., 200 in default in Fig.4) is 
performed. Using access bit can obtain the page-level hotness 
and the reuse time. To capture WD/RD2 patterns, SysMon 
examines dirty (also in PTE) and access bits in a sampling 
window, and then calculates the weighted ratio of reads and 
writes. By examining the bank indexing bits in the physical 
address and counting hot pages assigned to each memory bank, 
SysMon can also calculate variation and bank imbalance factor.  
Besides, using CPU performance-monitoring unit, SysMon can 
obtain per-channel bandwidth information with low overhead. 

C. Managing Hybrid Memory System 

Channel Allocation: Channel resource in memos is primarily 
used as a way to designate different types of memory resources 
and is scheduled based on an application page’s preference for 
DRAM or NVM. As such, our scheme attempts to direct hot 
pages into DRAM channel, especially for those with WD 
features. RD intensive pages can be directed through NVM 
channel onto NVM without hurting performance. Cold pages are 
kept in NVM to save energy and reserve DRAM capacity for hot 
and WD pages.  
    To improve the channel utilization, our design also balances 
the bandwidth across different channels. The core idea is, when a 
significant channel imbalance [7] is detected due to an excessive 
number of pages being assigned to DRAM, our scheme will 
trigger page migration to utilize the underutilized NVM channel 
to achieve a better overall performance. Memos will stop 
migrating pages from DRAM to NVM when the DRAM channel 
bandwidth utilization begins to drop. As such, the DRAM 
channel bandwidth utilization is always maximized, and the 
overall bandwidth is guaranteed to be improved. 
Cache Allocation Process: In our system, LLC resource is 
partitioned into dedicated slices to serve the memory requests 
directed onto DRAM and NVM channel respectively. As 
memory intensive pages with thrashing behaviors are mapped 
into DRAM for performance, isolating them in LLC can help to 
avoid thrashing other data, such as the data from NVM channel.  

 
Fig.2: Address mapping across cache-channel-bank of full hierarchy 

vertical management for hybrid memory system. Based on Intel i7-860.  

Moreover, a larger LLC quota to filter NVM accesses can hide 
the longer NVM latency. In practice, memos is monitoring 
memory patterns online, and adjusts the cache assignment to 
each channel dynamically. Taking NVM channel as an example, 
when WD pages are migrated onto it, memos will enlarge the 
cache capacity of NVM channel at the same time to filter the 
expensive write operations. The allocation process works like an 
expending “balloon”. Besides, in some cases, the data 
(especially these WD pages) from both NVM and DRAM 
channels, will be merged together in a larger LLC quota, while 
leaving two reserved smaller amount of LLC quotas (showed in 
Fig.1) for pages with streaming and rarely-touched behaviors.  
Bank Partitioning and Balancing: Memos uses bank 
partitioning to reduce memory interferences across threads. And, 
hot pages are migrated from highly utilized banks to lower ones 
to balance the overall bank utilization. Doing so is particularly 
effective in NVM due to its longer latency raised by memory 
interferences on bank among threads and hotspots. Even for 
DRAM, a balanced bank parallelism can hide memory latency 
and is crucial to achieve desirable performance for both 
memory-limited and intensive cases [6,7,8]. 
Full Hierarchy Management for Hybrid Memory: By 
combining all of the above, we construct a full hierarchy 
memory management strategy that manages resources from the 
upper levels (i.e., cache), through the middle levels (i.e., 
channels), to the lower levels of the memory banks. 
Application’s pages can be serviced by any flexible combination 
of a memory channel, banks, and LLC sets. Resources can be 
adjusted based on applications’ needs, or page level memory 
access patterns.  Enabling such a full hierarchy approach 
provides a large design space and optimization opportunity, 
particularly for system with hybrid memories.  

Leveraging Page-Coloring [6,7,8], we construct a framework 
that manages resources across the entire memory hierarchy. As 
illustrated in Fig.2, for a 4K size page (0~11 bits denotes the 
offset within the page) on a typical 64-bit architecture, bit 32 is 
used to dictate which channel to use to service a memory request. 
Therefore, by selecting a physical page with a specified value (0 
or 1) at bit 32, we can control which channel, and consequently 
which memory segment (DRAM or NVM) to accommodate the 
page. For cache resource, each unique combination of cache 
index bit values (bits 15, 16, 17, 18 shown in Fig.2), or cache-set 
color, dictates a slice (1/16) of LLC resource. Thus, we can 
adjust cache resource allocation and utilization by leveraging 
these bits. Fig.3 gives an example of scheduling 1/16 cache to 
NVM channel by mapping data vertically to pages, whose 15~18 
bits are with the value of 1 in blue color. Moreover, for the 
memory bank resource in both NVM and DRAM channel, 
memos monitors the bank utilization and enables the bank 

1 SysMon with beta version is now open sourced. The core idea is now adapted 

in VMware VCenter Lab., and Huawei. And, all of the information in section 3 

is obtained by SysMon. 

2 Read-Domain (RD) and Write-Domain (WD) indicate whether read or write 

operations are predominant. 



 

 

 

 

 

 
Fig.3: Illustration of the MCHA emulation platform. 

TABLE 1: The Parameters of memory hierarchy and NVM system. 

 

scheduling using the bank index bits (bit 20,21,12,13 and 14 in 
Fig.2). Usually, bit 20, 21 are used as a combination to uniquely 
dictate a group of 8 banks (called a bank-group color) for one 
application, and memos can assign additional banks groups by 
using more than one bank-group colors. In general, given L 
Bank-bits, M Cache-bits and N Channel-bits, and we can use i 
Bank-bits, j Cache-bits and k Channel-bits to generate a resource 
allocation policy denoted as (i,j,k), where 0 < i <= L, 0 < j <= M 
and 0 < k <= N.  
Deployment of MCHA: We emulate MCHA (in Fig.3) by 
deploying a channel-partitioning mechanism [7] to divide the 
memory address space into two segments, on a typical 
multi-core server with Intel i7 series CPU and dual-channel with 
8GB DDR3 main memory. We mark the channels as DRAM and 
NVM channel respectively, and set up a PIN-based simulation 
for NVM channel side by employing modified DRAMSim2 
(with NVM parameters) to simulate the NVM performance (i.e. 
energy, and latency). As PIN tool gets the memory traces with 
cache behaviors, we further use a cache simulator, DineroIV, to 
filter the memory accesses on cache hierarchy, and input them to 
NVM simulator. Table 1 shows the parameters in detail. 

D. Data Migration between NVM and DRAM 

Migration Mechanism: Fig.4 highlights memos’s migration 
mechanism. In summary, memos tries to segregate hot pages 
with WD label to DRAM, and keep RD pages as well as cold 
pages in NVM. At run time, memos visits each application’s 
physical page by using SysMon module, and migrates them 
when necessary. In Fig.4, the step 1 marks all the pages for a 
specific application with WD or RD labels. Begins from step 2, 
memos checks each page, and decides whether to migrate it or 
not according to the two parameters, NPass and WD_interval. 
Npass is the number of sampling passes that have been 
performed, and WD_interval is the distance to the last sampling 
pass when the page is labeled as WD. After, memos marks pages 
as “will-migrate” or not in step 3. Note that real migration will 
start at step 4 after NPass finishes. This design is useful in 
practice, because, during the following sampling period, the 
migration label may change due to the change of memory 
patterns. The entire mechanism works as a loop periodically. 
Avoiding Bank Conflicts for Efficient Data Migration: In 
our mechanism, the bank-level utilization information is always 
monitored, and such information is used by page placement 
routine in memos to avoid banks with hot spots. When moving 
hot pages from NVM to DRAM, these pages will be mapped to  

 
Fig.4: Page migration mechanism based on WD history. 

underutilized banks (coldest) for better balance, and vice versa. 
Doing this, memos avoids bank conflicts, and the memory 
migration will be benefited from better bank parallelism. Even 
for NVM, ideal bank parallelism can hide the expensive access 
latency, as NVM systems often provide a large amount of banks. 

III. EVALUATION 

A. Effectiveness of Managing Hybrid Memory 

Fig.5 shows the effectiveness of memos based on HOT/COLD 
rate that denotes the ratio of hot pages to cold pages, and 
WD/RD rate that shows the ratio of write operations to read 
operations (at page level) on DRAM and NVM, respectively. 
Taking hmmer as an example, DRAM HOT/COLD rate 
increases stably over time, indicating that hot pages are migrated 
to DRAM continuously. Meanwhile, DRAM WD/RD rate shows 
a similar but a sharper increasing trend. By contrast, HOT/ 
COLD and WD/RD rates in NVM exhibit consistently declining 
trend, illustrating that pages with RD features and relative low 
memory access frequency are moved to and kept in NVM. The 
bottom-right subfigure shows the metrics for a multi- 
programmed workload that includes several SPEC applications. 
We further test Memcached3, whose active working footprint is 
small but changes frequently. Fig.5 shows memos can handle 
these changes by migrating hotspots into DRAM to benefit the 
overall performance. Moreover, memos also tries to distinguish 
and segregate WD and RD pages across different channels, and 
thus the WD/RD rate is always higher in DRAM channel, though 
Memcached often exhibits very unstable write/read features. On 
average, the overall HOT/COLD (85.4%), and WD/RD (83.2%) 
rate in DRAM channel is larger than these in NVM channel.  
Energy, Latency and Lifetime: We evaluate the energy 
savings and memory latency reduction using the emulation 
system in Fig.3. For mcf, the dynamic energy in NVM channel is 
significantly reduced from 2.13 mWatt to 0.001 mW, while the  

 
Fig.5: Effectiveness of memos in resource scheduling. 

3 We tune the WD_interval (=2 and 3) parameters in this experiment. 

Memcached’s WD_interval is larger than other applications. Memos provides 

interface to users, and we can tune the parameters accordingly when 

environment changes.  



 

 

 

 

 

 
Fig.6: Bank-level parallelism improvement (lower is better). 

average memory access latency is reduced from 102 ns to 55.66 
ns. For xalan, the energy reduction is from 1.216 mW to 0.304 
mW, and the memory latency reduces from 78 ns to 61.21 ns. 
For the widely used Memcached, the energy consumption is 
reduced from 0.211 mW to 0.046 mW, while the memory 
latency is also improved to 60 ns from 62 ns, on average. For 
lifetime calculation, we model the NVM memory with cell 
endurance of Endurance_X (106 in Table 1). The NVM memory 
is operated at memory block granularity (i.e., 64 bytes). The 
overall NVM manages to achieve an overall lifetime, which is 
95% of the average NVM cell lifetime. Experimental results 
show that memos on MCHA can improve the NVM life by 40X 

(up to 500X) against random memory channel interleaving 
scheme4 on platform w/o MCHA and memos, on average.  

B. Rebalancing and Caching Effects 

Mentioned before, memos rebalances hot pages across memory 
banks for NVM and DRAM channel by combining both of the 
rebalancing hot pages across banks for a specific application, 
and partitioning memory resource across different threads. In 
single thread cases, seen from Fig.6, by rebalancing hotness 
across banks, the imbalance (measured by standard deviation of 
the number of active pages between hottest and coldest banks) is 
significantly reduced by around 60~70%, indicating that the 
bank parallelism is significantly improved. In the cases where 
several applications are running on MCHA, memos attempts to 
map migrated pages to the coldest bank across channels, 
contributing significantly to reducing bank conflicts and 
balancing. From the Multapp_DRAM/NVM sub-figures, the 
standard deviation of bank imbalance drops to around 20 stably 
in both DRAM and NVM channel, indicating memos work well 
in multi-programmed cases for bank balancing. 

C. Overall Performance of Memos on MCHA 

We compare memos on MCHA with some typical resource 
scheduling approaches, i.e. cache-bank vertical management 
[8,9] and utility-based cache partitioning without channel 
partitioning on our platform. Fig.7 illustrates the experimental 
results5. Memos with MCHA achieves an average of 19.1% 
performance gain, and outperforms the state-of-the-art approach 
by 7.3% (up to 11%). Memos performs well on most of the 
sampling points, especially points 6, 8, 10, 11, and 16. We 
further find that at these points pages with streaming accesses 
from thrashing applications (e.g. libquntum) are well confined 
into a dictated channel with a small segment of LLC, thus 
minimizing interferences among conflicting applications. At 
point 16, memos achieves the highest performance gain (around 
28%), due to streaming and rarely touched pages are serviced by 
different channels with a small LLC quota, while frequently  

 
Fig.7: Overall performance throughput improvement. 

accessed pages from all channels are allocated to use a larger 
amount of LLC, and channel-level bandwidth utilization are 
nearly balanced. Moreover, memos improves QoS (indicated by 
Max Slowdown) [6,8,11] significantly (23.6% on average).  
    Take the case in point 11 as an example, memos on MCHA 
can bring 34.1% benefits for QoS, while the utility-based cache, 
and vertical cache-bank partitioning with dual-channel 
interleaving scheme improve QoS by13.2%, 19.4%. Our new 
mechanism exhibits obvious advantages, and outperforms them 
by 20.9% and 14.7%, respectively. In general, memos performs 
well in memory intensive and high interference cases by 
isolating interfering memory patterns into dedicated memory 
channels, appropriate amount of banks and cache segments. 
Memos with MCHA achieves an even better performance, 
because the full hierarchy mechanism reduces memory 
interferences at each level of the memory hierarchy, 
outperforming the vertical cache-bank and other single level 
cache optimizations. 
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