

Memos: A Full Hierarchy Hybrid Memory Management Framework
Lei Liu1,2, Hao Yang1,2, Yong Li3, Mengyao Xie1,2, Lian Li2 and Chenggang Wu2

1Sys-Inventor Group, 2State Key Lab. of Computer Architecture, ICT, CAS. 3VMware, CA, US

Email: {liulei2010, yanghao2014, xiemengyao, lianli, wucg}@ict.ac.cn; yongl@vmware.com

Abstract—In this paper, we introduce memos, which integrates

suitable memory management policies and schedules resources

over the entire memory hierarchy in hybrid memory system.

Powered by an OS kernel level monitoring tool, memos captures

memory patterns online, and then leverages them to guide the

memory page placement and data mapping. Experimental results

show, on average, memos can benefit memory utilization,

contributing to system throughput and QoS by 19.1% and 23.6%.

Moreover, memos can reduce the NVM side memory latency by

3~83.3%, energy consumption by 25.1~99%, and benefit the NVM

lifetime significantly (40X improvement on average).

I. INTRODUCTION

N the era of big data and cloud computing, modern computer
systems are facing numerous new challenges, such as fast

growing memory footprint, rapidly increasing energy
consumption, high demand for throughput, etc. In a typical
cloud-computing environment, it is critical to have a large
capacity memory system that can provide fast data retrieval and
operate at a low energy cost. Recently, the emerging
Non-Volatile Memory (NVM) technologies bring an
opportunity to build such hybrid memory systems [1,3,10,11,12].
However, efficiently managing such hybrid memory systems
requires considerations of a variety of factors including the
distinct memory characteristics, diverse workload behaviors,
and architecture features, which poses new challenges for the
memory management mechanism in modern Operating System
(OS) [2,4,5,9,13,14,15,16,17].
 Many studies have discussed memory management for
“horizontal” hybrid memory system, which organizes DRAM
and NVM side by side at the same level in memory hierarchy
[1,11] through different memory channels. Based on this design,
our study has the following insights: (1) Managing all levels in
the entire memory hierarchy can bring enormous benefits,
especially for hybrid memory systems. In particular, besides
cache, memory channel is an interesting dimension to consider
as balancing, scheduling and isolating behaviors [7], which can
bring distinct impacts on DRAM and NVM. (2) For a hybrid
DRAM-NVM main memory system, an effective memory
management scheme should be aware of memory access
characteristics, since the performance of NVM and DRAM are
sensitive to certain behaviors such as memory footprint, access
hotness/hotspot, read/write activities, reuse time, etc. (3) An
ideal mechanism for managing hybrid memories should balance
memory utilization across memory banks/channels, and
efficiently migrate data between NVM and DRAM for
dynamically changing access patterns.

Based on the above considerations, we introduce memos, a
uniform memory management framework that can flexibly and
efficiently manage hybrid memory system. Firstly, memos
explores the synergy of all memory levels in the entire memory
hierarchy including the last level cache (LLC), channels and

memory banks, which collectively have a predominant impact
on hybrid memory system performance. Secondly, powered by
SysMon, an OS-level application behavior monitoring tool,
memos can obtain and leverage a rich source of memory
accessing information including memory utilization, hot/cold
pages, read/write patterns, and page reuse time, etc. Finally,
memos provides high memory bank-level parallelism by
rebalancing memory utilization across hot and underutilized
banks, thus facilitating data movements between DRAM and
NVM, and improving the overall bandwidth utilization. We list
our contributions:
(1) Full Hierarchy Hybrid Memory Management. For the
first time, memos achieves a full hierarchy, application demand
driven memory management covering cache, channels, and
DRAM/ NVM banks, greatly benefiting the utilization of hybrid
memory system and avoiding sub-optimal solutions caused by
previous approaches. Further, we design a write-interval based
migration scheme that moves pages across channels when
memory behavior changes.
(2) Dynamic Memory Bank/Channel Rebalancing. We
propose a memory bank rebalancing approach to provide higher
bank parallelism and boost data transfer rates between NVM and
DRAM by reducing bank-level interferences. Moreover, we also
balance memory requests across channels horizontally to
achieve higher memory utilization.
(3) Open Source SysMon. We open sourced SysMon, a kernel
tool used to collect memory footprint, page hotness, reuse
patterns, etc., for any running process. Specifically, SysMon can
detect page level reads/writes and bank balance behaviors,
which are critical to consider in hybrid memory environment.
(4) Real Implementation. We implement memos in Linux
kernel 2.6.32.15. Moreover, we further deploy a new emulation
platform for hybrid memory system on a real multi-core machine
by using the channel-partitioning approach [7].

II. MEMOS AND MCHA

A. Design Overview

Fig.1 illustrates the overall design for our Multi-Channel
Horizontal memory Architecture (MCHA), which combines
NVM and DRAM horizontally. Channel index bits in PFN
determine which channel, hence which type of memory (NVM
or DRAM), a memory access is serviced. Based on MCHA, we
design memos in the OS kernel. The core of memos is a Decision
Policy Mechanism (DPM), which includes memory manage-
ment policies, and provides the interfaces that interact with other
kernel modules. Leveraging runtime information captured by
SysMon (i.e. hot/cold pages, read/write features and reuse
distance, etc.), DPM firstly determines memory affinity mapping.
DPM also makes decision regarding when and how to migrate
the physical pages to another sub-memory system. Moreover,
memos includes effective state-of-the-art memory policies into
its core mechanism. DPM enables different cache policies for
different memory channels by reserving segments in LLC for
NVM and DRAM channel respectively, and optimizes cache and

I

This work is supported by NSF of China under grants No. 61502452,

61402445, 61303051, 61303052 and 61303053.

Fig.1: The overview of our design (memos and MCHA).

main memory utilization vertically when mapping pages. Finally,
for a specific sub-memory system, DPM employs the proper
memory policies (partitioning and rebalancing) based on the
characteristics of incoming memory requests.

B. SysMon: Inner-OS Application Profiling Tool

We design SysMon1, an application profiling tool, to collect
application characteristics online. To determine page hotness,
SysMon clears and checks (i.e., sampling) page access bit in
PTE in continuous sampling windows (passes). In each pass, a
given number of samplings (i.e., 200 in default in Fig.4) is
performed. Using access bit can obtain the page-level hotness
and the reuse time. To capture WD/RD2 patterns, SysMon
examines dirty (also in PTE) and access bits in a sampling
window, and then calculates the weighted ratio of reads and
writes. By examining the bank indexing bits in the physical
address and counting hot pages assigned to each memory bank,
SysMon can also calculate variation and bank imbalance factor.
Besides, using CPU performance-monitoring unit, SysMon can
obtain per-channel bandwidth information with low overhead.

C. Managing Hybrid Memory System

Channel Allocation: Channel resource in memos is primarily
used as a way to designate different types of memory resources
and is scheduled based on an application page’s preference for
DRAM or NVM. As such, our scheme attempts to direct hot
pages into DRAM channel, especially for those with WD
features. RD intensive pages can be directed through NVM
channel onto NVM without hurting performance. Cold pages are
kept in NVM to save energy and reserve DRAM capacity for hot
and WD pages.
 To improve the channel utilization, our design also balances
the bandwidth across different channels. The core idea is, when a
significant channel imbalance [7] is detected due to an excessive
number of pages being assigned to DRAM, our scheme will
trigger page migration to utilize the underutilized NVM channel
to achieve a better overall performance. Memos will stop
migrating pages from DRAM to NVM when the DRAM channel
bandwidth utilization begins to drop. As such, the DRAM
channel bandwidth utilization is always maximized, and the
overall bandwidth is guaranteed to be improved.
Cache Allocation Process: In our system, LLC resource is
partitioned into dedicated slices to serve the memory requests
directed onto DRAM and NVM channel respectively. As
memory intensive pages with thrashing behaviors are mapped
into DRAM for performance, isolating them in LLC can help to
avoid thrashing other data, such as the data from NVM channel.

Fig.2: Address mapping across cache-channel-bank of full hierarchy

vertical management for hybrid memory system. Based on Intel i7-860.

Moreover, a larger LLC quota to filter NVM accesses can hide
the longer NVM latency. In practice, memos is monitoring
memory patterns online, and adjusts the cache assignment to
each channel dynamically. Taking NVM channel as an example,
when WD pages are migrated onto it, memos will enlarge the
cache capacity of NVM channel at the same time to filter the
expensive write operations. The allocation process works like an
expending “balloon”. Besides, in some cases, the data
(especially these WD pages) from both NVM and DRAM
channels, will be merged together in a larger LLC quota, while
leaving two reserved smaller amount of LLC quotas (showed in
Fig.1) for pages with streaming and rarely-touched behaviors.
Bank Partitioning and Balancing: Memos uses bank
partitioning to reduce memory interferences across threads. And,
hot pages are migrated from highly utilized banks to lower ones
to balance the overall bank utilization. Doing so is particularly
effective in NVM due to its longer latency raised by memory
interferences on bank among threads and hotspots. Even for
DRAM, a balanced bank parallelism can hide memory latency
and is crucial to achieve desirable performance for both
memory-limited and intensive cases [6,7,8].
Full Hierarchy Management for Hybrid Memory: By
combining all of the above, we construct a full hierarchy
memory management strategy that manages resources from the
upper levels (i.e., cache), through the middle levels (i.e.,
channels), to the lower levels of the memory banks.
Application’s pages can be serviced by any flexible combination
of a memory channel, banks, and LLC sets. Resources can be
adjusted based on applications’ needs, or page level memory
access patterns. Enabling such a full hierarchy approach
provides a large design space and optimization opportunity,
particularly for system with hybrid memories.

Leveraging Page-Coloring [6,7,8], we construct a framework
that manages resources across the entire memory hierarchy. As
illustrated in Fig.2, for a 4K size page (0~11 bits denotes the
offset within the page) on a typical 64-bit architecture, bit 32 is
used to dictate which channel to use to service a memory request.
Therefore, by selecting a physical page with a specified value (0
or 1) at bit 32, we can control which channel, and consequently
which memory segment (DRAM or NVM) to accommodate the
page. For cache resource, each unique combination of cache
index bit values (bits 15, 16, 17, 18 shown in Fig.2), or cache-set
color, dictates a slice (1/16) of LLC resource. Thus, we can
adjust cache resource allocation and utilization by leveraging
these bits. Fig.3 gives an example of scheduling 1/16 cache to
NVM channel by mapping data vertically to pages, whose 15~18
bits are with the value of 1 in blue color. Moreover, for the
memory bank resource in both NVM and DRAM channel,
memos monitors the bank utilization and enables the bank

1 SysMon with beta version is now open sourced. The core idea is now adapted

in VMware VCenter Lab., and Huawei. And, all of the information in section 3

is obtained by SysMon.

2 Read-Domain (RD) and Write-Domain (WD) indicate whether read or write

operations are predominant.

Fig.3: Illustration of the MCHA emulation platform.

TABLE 1: The Parameters of memory hierarchy and NVM system.

scheduling using the bank index bits (bit 20,21,12,13 and 14 in
Fig.2). Usually, bit 20, 21 are used as a combination to uniquely
dictate a group of 8 banks (called a bank-group color) for one
application, and memos can assign additional banks groups by
using more than one bank-group colors. In general, given L
Bank-bits, M Cache-bits and N Channel-bits, and we can use i
Bank-bits, j Cache-bits and k Channel-bits to generate a resource
allocation policy denoted as (i,j,k), where 0 < i <= L, 0 < j <= M
and 0 < k <= N.
Deployment of MCHA: We emulate MCHA (in Fig.3) by
deploying a channel-partitioning mechanism [7] to divide the
memory address space into two segments, on a typical
multi-core server with Intel i7 series CPU and dual-channel with
8GB DDR3 main memory. We mark the channels as DRAM and
NVM channel respectively, and set up a PIN-based simulation
for NVM channel side by employing modified DRAMSim2
(with NVM parameters) to simulate the NVM performance (i.e.
energy, and latency). As PIN tool gets the memory traces with
cache behaviors, we further use a cache simulator, DineroIV, to
filter the memory accesses on cache hierarchy, and input them to
NVM simulator. Table 1 shows the parameters in detail.

D. Data Migration between NVM and DRAM

Migration Mechanism: Fig.4 highlights memos’s migration
mechanism. In summary, memos tries to segregate hot pages
with WD label to DRAM, and keep RD pages as well as cold
pages in NVM. At run time, memos visits each application’s
physical page by using SysMon module, and migrates them
when necessary. In Fig.4, the step 1 marks all the pages for a
specific application with WD or RD labels. Begins from step 2,
memos checks each page, and decides whether to migrate it or
not according to the two parameters, NPass and WD_interval.
Npass is the number of sampling passes that have been
performed, and WD_interval is the distance to the last sampling
pass when the page is labeled as WD. After, memos marks pages
as “will-migrate” or not in step 3. Note that real migration will
start at step 4 after NPass finishes. This design is useful in
practice, because, during the following sampling period, the
migration label may change due to the change of memory
patterns. The entire mechanism works as a loop periodically.
Avoiding Bank Conflicts for Efficient Data Migration: In
our mechanism, the bank-level utilization information is always
monitored, and such information is used by page placement
routine in memos to avoid banks with hot spots. When moving
hot pages from NVM to DRAM, these pages will be mapped to

Fig.4: Page migration mechanism based on WD history.

underutilized banks (coldest) for better balance, and vice versa.
Doing this, memos avoids bank conflicts, and the memory
migration will be benefited from better bank parallelism. Even
for NVM, ideal bank parallelism can hide the expensive access
latency, as NVM systems often provide a large amount of banks.

III. EVALUATION

A. Effectiveness of Managing Hybrid Memory

Fig.5 shows the effectiveness of memos based on HOT/COLD
rate that denotes the ratio of hot pages to cold pages, and
WD/RD rate that shows the ratio of write operations to read
operations (at page level) on DRAM and NVM, respectively.
Taking hmmer as an example, DRAM HOT/COLD rate
increases stably over time, indicating that hot pages are migrated
to DRAM continuously. Meanwhile, DRAM WD/RD rate shows
a similar but a sharper increasing trend. By contrast, HOT/
COLD and WD/RD rates in NVM exhibit consistently declining
trend, illustrating that pages with RD features and relative low
memory access frequency are moved to and kept in NVM. The
bottom-right subfigure shows the metrics for a multi-
programmed workload that includes several SPEC applications.
We further test Memcached3, whose active working footprint is
small but changes frequently. Fig.5 shows memos can handle
these changes by migrating hotspots into DRAM to benefit the
overall performance. Moreover, memos also tries to distinguish
and segregate WD and RD pages across different channels, and
thus the WD/RD rate is always higher in DRAM channel, though
Memcached often exhibits very unstable write/read features. On
average, the overall HOT/COLD (85.4%), and WD/RD (83.2%)
rate in DRAM channel is larger than these in NVM channel.
Energy, Latency and Lifetime: We evaluate the energy
savings and memory latency reduction using the emulation
system in Fig.3. For mcf, the dynamic energy in NVM channel is
significantly reduced from 2.13 mWatt to 0.001 mW, while the

Fig.5: Effectiveness of memos in resource scheduling.

3 We tune the WD_interval (=2 and 3) parameters in this experiment.

Memcached’s WD_interval is larger than other applications. Memos provides

interface to users, and we can tune the parameters accordingly when

environment changes.

Fig.6: Bank-level parallelism improvement (lower is better).

average memory access latency is reduced from 102 ns to 55.66
ns. For xalan, the energy reduction is from 1.216 mW to 0.304
mW, and the memory latency reduces from 78 ns to 61.21 ns.
For the widely used Memcached, the energy consumption is
reduced from 0.211 mW to 0.046 mW, while the memory
latency is also improved to 60 ns from 62 ns, on average. For
lifetime calculation, we model the NVM memory with cell
endurance of Endurance_X (106 in Table 1). The NVM memory
is operated at memory block granularity (i.e., 64 bytes). The
overall NVM manages to achieve an overall lifetime, which is
95% of the average NVM cell lifetime. Experimental results
show that memos on MCHA can improve the NVM life by 40X

(up to 500X) against random memory channel interleaving
scheme4 on platform w/o MCHA and memos, on average.

B. Rebalancing and Caching Effects

Mentioned before, memos rebalances hot pages across memory
banks for NVM and DRAM channel by combining both of the
rebalancing hot pages across banks for a specific application,
and partitioning memory resource across different threads. In
single thread cases, seen from Fig.6, by rebalancing hotness
across banks, the imbalance (measured by standard deviation of
the number of active pages between hottest and coldest banks) is
significantly reduced by around 60~70%, indicating that the
bank parallelism is significantly improved. In the cases where
several applications are running on MCHA, memos attempts to
map migrated pages to the coldest bank across channels,
contributing significantly to reducing bank conflicts and
balancing. From the Multapp_DRAM/NVM sub-figures, the
standard deviation of bank imbalance drops to around 20 stably
in both DRAM and NVM channel, indicating memos work well
in multi-programmed cases for bank balancing.

C. Overall Performance of Memos on MCHA

We compare memos on MCHA with some typical resource
scheduling approaches, i.e. cache-bank vertical management
[8,9] and utility-based cache partitioning without channel
partitioning on our platform. Fig.7 illustrates the experimental
results5. Memos with MCHA achieves an average of 19.1%
performance gain, and outperforms the state-of-the-art approach
by 7.3% (up to 11%). Memos performs well on most of the
sampling points, especially points 6, 8, 10, 11, and 16. We
further find that at these points pages with streaming accesses
from thrashing applications (e.g. libquntum) are well confined
into a dictated channel with a small segment of LLC, thus
minimizing interferences among conflicting applications. At
point 16, memos achieves the highest performance gain (around
28%), due to streaming and rarely touched pages are serviced by
different channels with a small LLC quota, while frequently

Fig.7: Overall performance throughput improvement.

accessed pages from all channels are allocated to use a larger
amount of LLC, and channel-level bandwidth utilization are
nearly balanced. Moreover, memos improves QoS (indicated by
Max Slowdown) [6,8,11] significantly (23.6% on average).
 Take the case in point 11 as an example, memos on MCHA
can bring 34.1% benefits for QoS, while the utility-based cache,
and vertical cache-bank partitioning with dual-channel
interleaving scheme improve QoS by13.2%, 19.4%. Our new
mechanism exhibits obvious advantages, and outperforms them
by 20.9% and 14.7%, respectively. In general, memos performs
well in memory intensive and high interference cases by
isolating interfering memory patterns into dedicated memory
channels, appropriate amount of banks and cache segments.
Memos with MCHA achieves an even better performance,
because the full hierarchy mechanism reduces memory
interferences at each level of the memory hierarchy,
outperforming the vertical cache-bank and other single level
cache optimizations.

REFERENCES
[1] G. Dhiman, R. Ayoub, T. Rosing, “PDRAM: A Hybrid PRAM and DRAM Main

Memory System,” In DAC, 2009.

[2] Y. Hu et al, "Towards Efficient Server Architecture for Virtualized Network
Function Deployment: Implications and Implementations,” In MICRO 2016

[3] E. Kultursay, M. Kandemir, A. Sivasubramaniam et al, “Evaluating STT-RAM as
an Energy-Efficient Main Memory Alternative,” In ISPASS, 2013.

[4] S. Li, T. Hoefler, M. Snir, “NUMA-aware shared-memory collective
communication for MPI,” In HPDC, 2013.

[5] J. Liu, B. Jaiyen, R. Veras, O. Mutlu, “RAIDR: Retention-Aware Intelligent
DRAM Refresh,” In ISCA, 2012.

[6] L. Liu, Z. Cui, M. Xing et al, “A Software Memory Partition Approach for
Eliminating Bank-level Interference in Multicore Systems,” In PACT, 2012.

[7] L. Liu, Z. Cui, Y. Li et al, “BPM/BPM+: Software-based Dynamic Memory
Partitioning Mechanisms for Mitigating DRAM Bank-/Channel-level
Interferences in Multicore Systems,” In ACM TACO, 2014.

[8] L. Liu, Y. Li, Z. Cui, et al, “Going Vertical in Memory Management: Handling
Multiplicity by Multi-policy,” In ISCA, 2014.

[9] L. Liu et al, “Rethinking Memory Management in Modern Operating System:
Horizontal, Vertical or Random?” In IEEE Trans. on Computers (TC), 2016.

[10] S. Lee, et al, “CLOCK-DWF: A Write-History-Aware Page Replacement
Algorithm for Hybrid PCM and DRAM Memory Architectures,” In IEEE Trans.
on Computers (TC), 2014.

[11] O. Mutlu, “Main Memory Scaling: Challenges and Solution Directions,” In More
than Moore Technologies for Next Generation Computer Design, 2015.

[12] M. K. Qureshi, S. Gurumurthi, B. Rajendran, “Phase change memory: From
devices to system,” In Synthesis Lectures on Computer Architecture, 2011.

[13] L. E. Ramos, E. Gorbatov, R. Bianchini, “Page placement in hybrid memory
systems,” In ICS, 2011.

[14] H. Seok, Y. Park, K. H. Park, “Migration Based Page Caching Algorithm for a
Hybrid Main Memory of DRAM and PRAM,” In SAC, 2011.

[15] L. Wang et al, “Articulation points guided redundancy elimination for betweenness
centrality,” In PPoPP, 2016.

[16] H. B. Yoon et al, “Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” In ICCD, 2012.

[17] F. Lv, L. Liu et al, “WiseThrottling: a new asynchronous task scheduler for
mitigating I/O bottleneck in large-scale datacenter servers,” J. of Supercomputing,
2015.

5 The baseline in original Buddy System in Linux kernel, running on normal

platform with channel-level interleaving page mapping scheme (without

channel partitioning).

4 We use channel-level interleaved mapping scheme, which maps pages evenly

across memory channels, as baseline in lifetime, energy, and performance

experiments. This scheme is widely use on multi-core systems with

multi-channel configuration.

